You can address biasness in Generative AI by referring to following:
- Analyze and Identify Bias: To begin, you must determine where your model contains bias. This can be achieved by using a variety of datasets that reflect different demographic groups to test the model. Examine the results to determine any biases. The code snippet below shows how evaluation of bias is done.

- Diverse Training Data: Ensure that the training dataset reflects all the populations you wish to have your model cater to. If your data is unbalanced, consider adding underrepresented groups to it. This can be accomplished by employing data augmentation techniques or by gathering additional samples.
- Mitigation Strategies: Use strategies to reduce bias when training. For instance, you can train the model to produce outputs while simultaneously preventing bias in those outputs by using adversarial debiasing. Here is the optimized implementation using adversarial training to mitigate bias in a models generated data.

- Fairness Restrictions: Include fairness restrictions in your training goals. For example, you can change the loss function to punish biased outputs if you're working on text generation.
- Frequent Audits: To make sure the model continues to behave fairly during inference, conduct regular audits of its outputs. Establish a feedback loop so that users can flag skewed results, which you can then examine to improve the model even more.
By employing these steps, you will be able to handle biasness in your model.
Related Post: How to handle generation of inappropriate or biased outputs