import sqlContext.implicits._
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.{StructType, StructField, LongType}
val df = sc.parallelize(Seq(
("a", -1.0), ("b", -2.0), ("c", -3.0))).toDF("foo", "bar")
Extract schema for further usage:
val schema = df.schema
Add id field:
val rows = df.rdd.zipWithUniqueId.map{
case (r: Row, id: Long) => Row.fromSeq(id +: r.toSeq)}
Create DataFrame:
val dfWithPK = sqlContext.createDataFrame(
rows, StructType(StructField("id", LongType, false) +: schema.fields))
The same thing in Python:
from pyspark.sql import Row
from pyspark.sql.types import StructField, StructType, LongType
row = Row("foo", "bar")
row_with_index = Row(*["id"] + df.columns)
df = sc.parallelize([row("a", -1.0), row("b", -2.0), row("c", -3.0)]).toDF()
def make_row(columns):
def _make_row(row, uid):
row_dict = row.asDict()
return row_with_index(*[uid] + [row_dict.get(c) for c in columns])
return _make_row
f = make_row(df.columns)
df_with_pk = (df.rdd
.zipWithUniqueId()
.map(lambda x: f(*x))
.toDF(StructType([StructField("id", LongType(), False)] + df.schema.fields)))
If you prefer the consecutive number you can replace zipWithUniqueId with zipWithIndex but it is a little bit more expensive.
Directly with DataFrame API:
(universal Scala, Python, Java, R with pretty much the same syntax)
Previously I've missed monotonically increasing id function which should work just fine as long as you don't require consecutive numbers:
import org.apache.spark.sql.functions.monotonicallyIncreasingId
df.withColumn("id", monotonicallyIncreasingId).show()
// +---+----+-----------+
// |foo| bar| id|
// +---+----+-----------+
// | a|-1.0|17179869184|
// | b|-2.0|42949672960|
// | c|-3.0|60129542144|
// +---+----+-----------+
While useful monotonically increasing id is non-deterministic. Not only ids may be different from execution to execution but without additional tricks cannot be used to identify rows when subsequent operations contain filters.
Note:
It is also possible to use the rowNumber window function:
from pyspark.sql.window import Window
from pyspark.sql.functions import rowNumber
w = Window().orderBy()
df.withColumn("id", rowNumber().over(w)).show()
Unfortunately:
WARN Window: No Partition Defined for Window operation! Moving all data to a single partition, this can cause serious performance degradation.
So unless you have a natural way to partition your data and ensure uniqueness is not particularly useful at this moment.
To know more about SQL, It's recommended to join PySpark Course today.