ValueError help with Simple Exponential Smoothing analysis on my data set

+1 vote

I'm very new, and attempting to teach myself Python through online resources.

I've attempted the following code I found online to conduct a Single Exponential Smoothing Analysis on my time series data:

# Simple Exponential Smoothing
fit1 = SimpleExpSmoothing(Data).fit(smoothing_level=0.2,optimized=False)
fcast1 = fit1.forecast(12).rename(r'$\alpha=0.2$')
# plot
fcast1.plot(marker='o', color='blue', legend=True)
fit1.fittedvalues.plot(marker='o',  color='blue')

fit2 = SimpleExpSmoothing(Data).fit(smoothing_level=0.6,optimized=False)
fcast2 = fit2.forecast(12).rename(r'$\alpha=0.6$')
# plot
fcast2.plot(marker='o', color='red', legend=True)
fit2.fittedvalues.plot(marker='o', color='red')

fit3 = SimpleExpSmoothing(Data).fit()
fcast3 = fit3.forecast(12).rename(r'$\alpha=%s$'%fit3.model.params['smoothing_level'])
# plot
fcast3.plot(marker='o', color='green', legend=True)
fit3.fittedvalues.plot(marker='o', color='green')

plt.show()

This code returns the error: 

"Pandas data cast to numpy dtype of object. Check input data with np.asarray(data)."

I have researched online and attempted to create dummy variables within my dataset, however the result remains the same.

Month Product Key Income

01-Apr-18

A100

97426.50
01-Apr-18 A101 8289.05
01-Apr-18 A102 0.00

Above is a 3 row snippet of the dataset, could it be the structure of the data that causes the forecast/SES code to result in an error?

Entire ValueError code:

ValueError Traceback (most recent call last) <ipython-input-6-c73edf2e1e6d> in <module> 1 # Simple Exponential Smoothing ----> 2 fit1 = SimpleExpSmoothing(Data).fit(smoothing_level=0.2,optimized=False) 3 fcast1 = fit1.forecast(12).rename(r'$\alpha=0.2$') 4 # plot 5 fcast1.plot(marker='o', color='blue', legend=True) 

~\Anaconda3\lib\site-packages\statsmodels\tsa\holtwinters.py in __init__(self, endog) 1005 1006 def __init__(self, endog): -> 1007 super(SimpleExpSmoothing, self).__init__(endog) 1008 1009 def fit(self, smoothing_level=None, optimized=True, start_params=None, 

~\Anaconda3\lib\site-packages\statsmodels\tsa\holtwinters.py in __init__(self, endog, trend, damped, seasonal, seasonal_periods, dates, freq, missing) 484 seasonal_periods=None, dates=None, freq=None, missing='none'): 485 super(ExponentialSmoothing, self).__init__( --> 486 endog, None, dates, freq, missing=missing) 487 if trend in ['additive', 'multiplicative']: 488 trend = {'additive': 'add', 'multiplicative': 'mul'}[trend] 

~\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py in __init__(self, endog, exog, dates, freq, missing, **kwargs) 47 missing='none', **kwargs): 48 super(TimeSeriesModel, self).__init__(endog, exog, missing=missing, ---> 49 **kwargs) 50 51 # Date handling in indexes ~\Anaconda3\lib\site-packages\statsmodels\base\model.py in __init__(self, endog, exog, **kwargs) 214 215 def __init__(self, endog, exog=None, **kwargs): --> 216 super(LikelihoodModel, self).__init__(endog, exog, **kwargs) 217 self.initialize() 218 ~\Anaconda3\lib\site-packages\statsmodels\base\model.py in __init__(self, endog, exog, **kwargs) 66 hasconst = kwargs.pop('hasconst', None) 67 self.data = self._handle_data(endog, exog, missing, hasconst, ---> 68 **kwargs) 69 self.k_constant = self.data.k_constant 70 self.exog = self.data.exog 

~\Anaconda3\lib\site-packages\statsmodels\base\model.py in _handle_data(self, endog, exog, missing, hasconst, **kwargs) 89 90 def _handle_data(self, endog, exog, missing, hasconst, **kwargs): ---> 91 data = handle_data(endog, exog, missing, hasconst, **kwargs) 92 # kwargs arrays could have changed, easier to just attach here 93 for key in kwargs: 

~\Anaconda3\lib\site-packages\statsmodels\base\data.py in handle_data(endog, exog, missing, hasconst, **kwargs) 633 klass = handle_data_class_factory(endog, exog) 634 return klass(endog, exog=exog, missing=missing, hasconst=hasconst, --> 635 **kwargs) ~\Anaconda3\lib\site-packages\statsmodels\base\data.py in __init__(self, endog, exog, missing, hasconst, **kwargs) 74 self.orig_endog = endog 75 self.orig_exog = exog ---> 76 self.endog, self.exog = self._convert_endog_exog(endog, exog) 77 78 self.const_idx = None 

~\Anaconda3\lib\site-packages\statsmodels\base\data.py in _convert_endog_exog(self, endog, exog) 473 exog = exog if exog is None else np.asarray(exog) 474 if endog.dtype == object or exog is not None and exog.dtype == object: --> 475 raise ValueError("Pandas data cast to numpy dtype of object. " 476 "Check input data with np.asarray(data).") 477 return super(PandasData, self)._convert_endog_exog(endog, exog) 

ValueError: Pandas data cast to numpy dtype of object. Check input data with np.asarray(data).
Jul 31, 2019 in Python by Declan

edited Jul 31, 2019 4,520 views
Hey @Declan, what form is your data in? Is it in the form of DataFrame format?
Hi, I'm currently using Jupyter not PyCharm and no I haven't used the DataFrame format, the example I was following didn't indicate to apply this.

I will try it now and see if it changes anything
@Kyraa I have just checked and using the "PD.READ.CSV" function creates a dataframe from the source data, if this is correct then the format is in a dataframe
@Kyraa, I think I have found the problem, I attempted to use some similar time series forecast through Power BI with the same dataset, and it returned with 'not enough data points'. I'm unsure how many points is required for the SES model, so I'll attempt the same code with another set holding more data points, to see if the result changes.

Thankyou

Yeah, try using a dataset with higher data points. Also, try converting your model as below before using the .fit()

fit2 = SimpleExpSmoothing(np.asarray(Data)).fit(smoothing_level=0.6,optimized=False)

Let me know what happens. 

No answer to this question. Be the first to respond.

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.

Related Questions In Python

0 votes
1 answer
0 votes
0 answers

i would like assistance on my code after i input: y = data.temp x = data.drop('temp', axis=1)

This error appeared:      Traceback (most recent call ...READ MORE

Jul 30, 2019 in Python by mimo
560 views
0 votes
0 answers

I am trying to install PyBase64 on my python 3.8. But I end up with the following error:

$ pip install pybase ERROR: Could not find ...READ MORE

Mar 24, 2020 in Python by Nishant
• 210 points
3,002 views
0 votes
1 answer

I am trying to install os-win on my python 3.8. But I end up with the following error:

I have the same issue and is ...READ MORE

answered Sep 6, 2020 in Python by anonymous
7,913 views
0 votes
1 answer

I am trying to install visualize on my python 3.8 but i end up with the followinf error.

Hi@Avinash, I think the module name is visualization ...READ MORE

answered Apr 27, 2020 in Python by MD
• 95,460 points
1,583 views
0 votes
1 answer

what is vm options ? I installed Pycharm on my pc but it shows no vm options file found . What should i do please help me to fix it

Hi, @Mushfiqkhantrial, It is important to run pycharm.sh from the bin folder. The VM ...READ MORE

answered Oct 4, 2020 in Python by Gitika
• 65,770 points
1,823 views
0 votes
2 answers
+1 vote
2 answers

how can i count the items in a list?

Syntax :            list. count(value) Code: colors = ['red', 'green', ...READ MORE

answered Jul 7, 2019 in Python by Neha
• 330 points

edited Jul 8, 2019 by Kalgi 4,434 views
0 votes
1 answer
+5 votes
6 answers

Lowercase in Python

You can simply the built-in function in ...READ MORE

answered Apr 11, 2018 in Python by hemant
• 5,790 points
4,067 views
webinar REGISTER FOR FREE WEBINAR X
REGISTER NOW
webinar_success Thank you for registering Join Edureka Meetup community for 100+ Free Webinars each month JOIN MEETUP GROUP