Yes, it is possible to do so without adding packages. I have shared an example program below for reference:
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Partitioner;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
public class WithPartitioner {
public static class Map extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {
@Override
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
value.set(tokenizer.nextToken());
output.collect(value, new IntWritable(1));
// // I am fine I am fine
// v
// I 1
// am 1
// fine 1
// I 1
// am 1
// fine 1
// I (1,1)
}
}
}
// Output types of Mapper should be same as arguments of Partitioner
public static class MyPartitioner implements Partitioner<Text, IntWritable> {
@Override
public int getPartition(Text key, IntWritable value, int numPartitions) {
String myKey = key.toString().toLowerCase();
if (myKey.equals("hadoop")) {
return 0;
}
if (myKey.equals("data")) {
return 1;
} else {
return 2;
}
}
@Override
public void configure(JobConf arg0) {
// Gives you a new instance of JobConf if you want to change Job
// Configurations
}
}
public static class Reduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {
@Override
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
// sum = sum + 1;
}
// beer,3
output.collect(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WithPartitioner.class);
conf.setJobName("wordcount");
// Forcing program to run 3 reducers
conf.setNumReduceTasks(3);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setPartitionerClass(MyPartitioner.class);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
}
}