from sklearn.datasets import load_boston
boston_data = load_boston()
df = pd.DataFrame(boston_data.data , columns = boston_data.feature_names)
df
x = df
y = boston_data.target
x.columns
reg.fit(x,y)
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y)
reg.fit(x_train, y_train)
predicted = reg.predict(x_test)
expected = y_test
How to I compare the predicted and expected values to understand the model?