error = []
# calculation error for K values between 1 and 30
for i in range(1,30):
knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(x_train, y_train)
pred_i = knn.predict(x_test)
error.append(np.mean(pred_i !=y_test))
plt.figure(figsize=(12,6))
plt.plot(range(1,30),error,color='red',linestyle='dashed',marker='o',marker_size=102)
plt.xlable('K value')
plt.ylable('Mean Error')
print("Minimumerror:-",min(error),"at K",error.index(min(error))+1)