I have taken 3 classification models,
clf1 = DecisionTreeClassifier(max_depth=4)
clf2 = KNeighborsClassifier(n_neighbors=7)
clf3 = SVC(kernel='rbf', probability=True)
I am passing them to voting classifier as parameters and choose soft voting.
eclf = VotingClassifier(estimators=[('dt', clf1), ('knn', clf2), ('svc', clf3)], voting='soft', weights=[2,1,2])
clf1 = clf1.fit(titanic_train1,y_train)
clf2 = clf2.fit(titanic_train1,y_train)
clf3 = clf3.fit(titanic_train1,y_train)
eclf = eclf.fit(titanic_train1,y_train)
Here i am getting error ,AttributeError: 'VotingClassifier' object has no attribute 'best_score_'
print("CvScore",eclf.best_score_)
print("Train accuracy",eclf.score(titanic_train1, y_train))
I want to find best tuning parameters for this model?