data_val = X_scaler.fit_transform(df[['CentreLift_Max-Warning', 'CentreLift_Min-Warning', 'CentreLift_Max-tripping', 'CentreLift_Min-tripping', 'CentreLift_RmsMotorCurrent', 'CentreLift_RmsMotorTorque', 'CentreLift_MotorTemp','DT_SF3_CentreLift']].tail(48))
val_rescaled = data_val.reshape(1, data_val.shape[0], data_val.shape[1])
pred = lstm_model.predict(val_rescaled)
pred_Inverse = Y_scaler.inverse_transform(pred)
def timeseries_evaluation_metrics_func(y_true, y_pred):
def mean_absolute_percentage_error(y_true, y_pred):
y_true, y_pred = np.array(y_true), np.array(y_pred)
return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
print('Evaluation metric results:-')
print(f'MSE is : {metrics.mean_squared_error(y_true, y_pred)}')
print(f'MAE is : {metrics.mean_absolute_error(y_true, y_pred)}')
print(f'RMSE is : {np.sqrt(metrics.mean_squared_error(y_true, y_pred))}')
print(f'MAPE is : {mean_absolute_percentage_error(y_true, y_pred)}')
print(f'R2 is : {metrics.r2_score(y_true, y_pred)}',end='\n\n')
timeseries_evaluation_metrics_func(validate['DT_SF3_CentreLift'],pred_Inverse[0]) # getting error for this line
Evaluation metric results:-
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-44-fcaf93c4e487> in <module>
----> 1 timeseries_evaluation_metrics_func(validate['DT_SF3_CentreLift'],pred_Inverse[0])
<ipython-input-30-c158671e5d38> in timeseries_evaluation_metrics_func(y_true, y_pred)
4 return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
5 print('Evaluation metric results:-')
----> 6 print(f'MSE is : {metrics.mean_squared_error(y_true, y_pred)}')
7 print(f'MAE is : {metrics.mean_absolute_error(y_true, y_pred)}')
8 print(f'RMSE is : {np.sqrt(metrics.mean_squared_error(y_true, y_pred))}')
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\_regression.py in mean_squared_error(y_true, y_pred, sample_weight, multioutput, squared)
250 """
251 y_type, y_true, y_pred, multioutput = _check_reg_targets(
--> 252 y_true, y_pred, multioutput)
253 check_consistent_length(y_true, y_pred, sample_weight)
254 output_errors = np.average((y_true - y_pred) ** 2, axis=0,
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\_regression.py in _check_reg_targets(y_true, y_pred, multioutput, dtype)
82
83 """
---> 84 check_consistent_length(y_true, y_pred)
85 y_true = check_array(y_true, ensure_2d=False, dtype=dtype)
86 y_pred = check_array(y_pred, ensure_2d=False, dtype=dtype)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in check_consistent_length(*arrays)
210 if len(uniques) > 1:
211 raise ValueError("Found input variables with inconsistent numbers of"
--> 212 " samples: %r" % [int(l) for l in lengths])
213
214
ValueError: Found input variables with inconsistent numbers of samples: [175156, 10]