training_data = [
["Green",3, 'Mango'],
['Yellow',3,'Mango'],
['Red',1, 'Grape'],
['Red',1, 'Grape'],
['Yellow',3,'Lemon']
]
header = ['color','diameter', 'label']
def unique_vals(rows, col):
""" Find the unique values for a column in a dataset"""
return set([row[col] for row in rows])
def class_counts(rows):
""" Counts the number of each type of example in a dataset"""
count = {}
for row in rows:
label = row[-1]
if label not in counts:
counts[label] = 0
counts[label] += 1
return counts
def is_numeric(value):
""" test if a value is numeric or not"""
return isinstance(value, int) or isinstance(value, float)
class Question: #a question is used to paratition a dataset
def __init__(self , column, value):
self.column = column
self.value = value
def match(self, example):
# compare the feature value in the example to the feature value in the question
val = example[self.column]
if is_numeric(val):
return value >= self.value
else:
return val == self.value
def __repr__(self):
# this is just the helper method to print the question in a readable format
condition = "=="
if is_numeric(self.value):
condition =">="
return " Is %s %s %s?" % (
header[self.column], condition, str(self.value))
def paratition(rows, question):
""" Partitions in a dataset"""
true_rows, false_rows = [], []
for row in rows:
if question.match(row):
true_rows.append(row)
else:
false_rows.append(row)
return true_rows, false_rows
def gini(rows):
counts = class_counts(rows)
impurity = 1
for lbl in counts:
prob_of_lbl = counts[lbl] / float(len(rows))
impurity -= prob_of_lbl**2
return impurity
def info_gain(left, right, current_uncertainity):
p = float(len(left))/ (len(left)+ len(right))
return current_uncertainity - p * gini(left) - (1-p) * gini(right)
def find_the_split(best):
""" find the best ques to ask by inerating over every feature value and caclulating the information gain"""
best_gain = 0 # keep track of the best information gain
best_question = None
current_uncertainity = gini(rows)
n_features = len(rows[0])- 1 # no of columns
for col in range(n_features):
values = set([row[col] for row in rows])
for val in values: # for each value
question = Question(col, val)
# try spliting the dataset
true_rows, false_rows = paratition(rows ,question)
if len(true_rows)== 0 or len(false_rows) == 0:
continue
#calculate the IG from the split
gain = info_gain(true_rows, false_rows, current_uncertainity)
if gain >= best_gain:
best, best_question = gain, question
return best_gain, best_question
class Leaf:
def __init__(self, rows):
self.predictions = class_counts(rows)
class Decision_Node:
def __init__(self, question, true_branch, false_branch):
self.question = question
self.true_branch = true_branch
self.false_branch = false_branch
def build_tree(rows):
"""build the tree"""
gain, question = find_the_split(rows)
if gain == 0:
return Leaf(rows)
true_rows, false_rows = paratition(rows, question)
true_branch = build_tree(true_rows)
false_branch = build_tree(false_rows)
def print_tree(node, spacing=""):
"""World's most elegant tree printing function"""
if isinstance(node, Leaf):
print(spacing+ "Predict" , node.paratitions)
return
# PRINT THE QUESTION AT THIS NODE
print(spacing + str(node.question))\
print(spacing +'--> True:')
print_tree(node.true_branch, spacing + " ")
print(spacing +'--> False:')
print_tree(node.false_branch, spacing + " ")
def classify(row, node):
if isinstance(node, Leaf):
return node.predictions
if node.question.match(row):
return classify(row, node.true_branch)
else:
return classify(row, node.false_branch)
def print_leaf(counts):
""" print the predictions at leaf"""
total = sum(counts.values())* 1.0
probs = {}
for lbl in counts.keys():
probs[lbl]= str(int(counts[lbl]/ total * 100)) + "%s"
return probs
if __name__ == "__main__":
my_tree = build_tree(training_data)
print_tree(my_tree)
#Evaluate
testing_data = [
["Green",3, 'Mango'],
['Yellow',3,'Mango'],
['Red',1, 'Grape'],
['Red',1, 'Grape'],
['Yellow',3,'Lemon']
]
for row in testing_data:
print("Actual: %s, Predicted: %s"%
(row[-1], print_leaf(classify(row, my_tree))))