Introduction to Apache Hive

Last updated on Jun 05,2023 12.4K Views

Introduction to Apache Hive

edureka.co

Apache Hive is a Data Warehousing package built on top of Hadoop and is used for data analysis. Hive is targeted towards users who are comfortable with SQL. It is similar to SQL and called HiveQL, used for managing and querying structured data. Apache Hive is used to abstract complexity of Hadoop. This language also allows traditional map/reduce programmers to plug in their custom mappers and reducers. The popular feature of Hive is that there is no need to learn Java.

Hive, an open source peta-byte scale date warehousing framework based on Hadoop, was developed by the Data Infrastructure Team at Facebook. Hive is also one of the technologies that are being used to address the requirements at Facebook. Hive is  very popular with all the users internally at Facebook and is being used to run thousands of jobs on the cluster with hundreds of users, for a wide variety of applications. Hive-Hadoop cluster at Facebook stores more than 2PB of raw data and regularly loads 15 TB of data on a daily basis.

Let’s look at some of its features that makes it popular and user friendly:

Apache Hive Use Case – Facebook: 

Before implementing Hive, Facebook faced a lot of challenges as the size of data being generated increased or rather exploded, making it really difficult to handle them. The traditional RDBMS couldn’t handle the pressure and as a result Facebook was looking out for better options. To solve this impending issue, Facebook initially tried using Hadoop MapReduce, but with difficulty in programming and mandatory knowledge in SQL, made it an impractical solution. Hive allowed them to overcome the challenges they were facing.

With Hive, they are now able to perform the following:

Hive Use Case in Healthcare:

Where to Use Hive?

Apache Hive can be used in the following places:

Hive Architecture:

Hive consists of the following major components:

Become a master of data architecture and shape the future with our comprehensive Data Architect Certification.

Components of Hive:

Metastore:

The Metastore stores the information about the tables, partitions, the columns within the tables. There are 3 ways of storing in Metastore: Embedded Metastore, Local Metastore and Remote Metastore. Mostly, Remote Metastore will be used in production mode.

 Limitations of Hive:

Hive has the following limitations and cannot be used  under such circumstances:

Got a question for us? Mention them in the comments section and we will get back to you.

Related Posts:

Big Data and Hadoop Training

Hive Commands

Pig Vs Hive

BROWSE COURSES