ggplot2 Tutorial: Data Visualization Using ggplot2 Package

Last updated on Jun 26,2020 15.9K Views

ggplot2 Tutorial: Data Visualization Using ggplot2 Package

edureka.co

Data visualization is an essential component of a data scientist’s skill set which you need to master in the journey of becoming Data Scientist. It is statistics and design combined in a meaningful way to interpret the data with graphs and plots. In this ggplot2 tutorial we will see how to visualize data using gglot2 package provided by R.

Data, Data everywhere…. how do I understand it?

We see that data visualization tools help in exploring the data, as well as explaining the data.

This blog will cover the following topics:


Let us begin this blog by first looking at the types of visualization.

GGPLOT2 tutorial: Types of Visualization

In statistics, we generally have two kinds of visualization:

GGPLOT2 tutorial: What tools do I have for data visualization?

We have a number of visualization tools to make aesthetic graphs. Let’s look at some of them:

Paid Tools: These tools might be initially costly to purchase but the solutions provided by them are definitely worth the money spent.

 

 

Open source Tools: Though not as effective as the paid tools, these do help in taking care of all the necessities.

GGPLOT2 tutorial: Grammar of graphics

In any language the grammatical rules are to be kept in mind to construct meaningful sentences, such as:

> “I am John” makes sense, because it follows proper grammar.

> “Am John I” doesn’t make sense because it doesn’t adhere to the grammatical rules.

Similarly, we have “grammar of graphics” which needs to be followed for creating perfect graphs.

Elements of Grammar of graphics

ComponentDescription
DataThe data-set being plotted
AestheticsThe scales onto which we plot our data
GeometryThe visual elements used for our data
FacetGroups by which we divide the data

 

GGPLOT2 tutorial: Visualisation using ggplot2

The ggplot2 package is a simplified implementation of grammar of graphics written by Hadley Wickham for R.

It takes care of many of the fiddly details that make plotting a hassle (like drawing legends) as well as providing a powerful model of graphics that makes it easy to produce complex multi-layered graphics.

So, let’s dive into the R code:

install.packages("ggplot2")
library(ggplot2)
install.packages("statisticalModeling")
library(statisticalModeling)
head(Birth_weight) 
##   baby_wt  income mother_age     smoke gestation mother_wt
  ## 1     120 level_1         27 nonsmoker       284       100
  ## 2     113 level_4         33 nonsmoker       282       135
  ## 3     128 level_2         28    smoker       279       115
  ## 4     108 level_1         23    smoker       282       125
  ## 5     132 level_2         23 nonsmoker       245       140
  ## 6     120 level_2         25 nonsmoker       289       125
str(Birth_weight) 

This will give us the structure of the data-set

## 'data.frame':    884 obs. of  6 variables:
  ##  $ baby_wt   : int  120 113 128 108 132 120 143 144 141 110 ...
  ##  $ income    : chr  "level_1" "level_4" "level_2" "level_1" ...
  ##  $ mother_age: int  27 33 28 23 23 25 30 32 23 36 ...
  ##  $ smoke     : chr  "nonsmoker" "nonsmoker" "smoker" "smoker" ...
  ##  $ gestation : int  284 282 279 282 245 289 299 282 279 281 ...
  ##  $ mother_wt : int  100 135 115 125 140 125 136 124 128 99 ...

And now, let’s start plotting!!!!

Plot1: Simple Bar-plot (Showing distribution of baby’s weight)

ggplot(data = Birth_weight,aes(x=baby_wt))+geom_bar()

The above code has three parts:

ggplot2 tutorial:bar plot

We can easily say that the weight is in the range of 55-175 by just looking at this bar plot.

Plot2: Simple Bar-plot (Showing distribution of mother’s age)

ggplot(data = Birth_weight,aes(x=mother_age))+geom_bar()

ggplot2 tutorial:bar plot

This graph shows that the mother’s age would lie in the range of 15-45.

Plot3: Colored Bar-plot 

ggplot(data = Birth_weight,aes(x=mother_age))+geom_bar(fill="aquamarine4")

ggplot2 tutorial:bar plot

Same plot as above, but it looks prettier, doesn’t it?

Plot4: Bar-plot(color variation w.r.t income levels)

ggplot(data = Birth_weight,aes(x=mother_age,fill=income))+geom_bar()

ggplot2 tutorial:bar plot

We see the variation In income levels across the distribution of mother’s age, i.e. across each bar, we are also depicting the variation in income levels.

Plot5: Inverted Bar-plot

ggplot(data = Birth_weight,aes(x=mother_age,fill=income))+geom_bar()+coord_flip()

ggplot2 tutorial:bar plot

What do we observe? Nothing much to be honest…

We’ll also be working with the “mtcars” dataset. Thus, let’s observe the first six rows of this dataset.

head(mtcars)
##                          mpg     cyl  disp   hp  drat    wt  qsec vs am gear carb
  ## Mazda RX4             21.0   6  160  110  3.90 2.620 16.46  0  1    4    4
  ## Mazda RX4 Wag      21.0   6  160  110  3.90 2.875 17.02  0  1    4    4
  ## Datsun 710            22.8   4  108   93   3.85 2.320 18.61  1  1    4    1
  ## Hornet 4 Drive        21.4   6  258  110  3.08 3.215 19.44  1  0    3    1
  ## Hornet Sportabout  18.7   8  360  175  3.15 3.440 17.02  0  0    3    2
  ## Valiant                   18.1   6  225  105  2.76 3.460 20.22  1  0    3    1

Plot6: Bar-plot

ggplot(data = mtcars,aes(x=cyl,fill=factor(gear)))+geom_bar()

ggplot2 tutorial:bar plot

We see that:

Plot7: Bar-plot( Variation in terms of proportion)

ggplot(data = mtcars,aes(x=cyl,fill=factor(gear)))+geom_bar(position = "fill")

ggplot2 tutorial:bar plot

Same bar plot, showing proportion instead of count.

Plot8: Bar-plot(Dodge comparison)

ggplot(data = mtcars,aes(x=cyl,fill=factor(gear)))+geom_bar(position = "dodge")

ggplot2 tutorial:bar plot

We see individual bars for number of gears.

The same inference can be drawn but it is much clear from this graph.

Plot9: Bar-plot (Facet division)

ggplot(data = Birth_weight,aes(x=mother_age,fill=smoke))+geom_bar()+facet_grid(. ~smoke)

ggplot2 tutorial:barplot

Plot10: Scatter-plot

ggplot(data = mtcars,aes(x=mpg,y=hp,col=factor(cyl)))+geom_point()

ggplot2 tutorial:scatter plot

We can infer that:

Plot11: Scatter-plot(Size variation)

ggplot(data = mtcars,aes(x=mpg,y=hp,col=factor(cyl),size=factor(gear)))+geom_point()+labs(size="gear",col="cyl")

ggplot2 tutorial:Scatter plot

We can infer that:

Plot12: Box-plot

ggplot(data = Birth_weight,aes(x=smoke,y=baby_wt,fill=income))+geom_boxplot()

ggplot2 tutorial:Box plot

Plot13: Line-plot

ggplot(data = Birth_weight,aes(x=mother_wt,y=baby_wt))+geom_smooth()

ggplot2 tutorial:line plot

We see that as the mother’s weight(mother_wt) increases, the baby’s weight(baby_wt) also increases.

Plot14: Line-plot(Comparison of two line curves)

ggplot(data = Birth_weight,aes(x=mother_wt,y=baby_wt,col=smoke))+geom_smooth()

ggplot2 tutorial:Line plot

We see that if the mother is a non-smoker then the baby’s weight will be higher.

Plot15: Jitter-plot

ggplot(data = Birth_weight,aes(x=smoke,y=baby_wt,col=smoke))+geom_jitter()

 

                            

ggplot2 tutorial:Jitter plot

 

Prior to the statistical analysis and model building, it is essential to visually observe the relationship between the different data elements. This helps us in obtaining meaningful insights from the data to build better models. R’s ggplot2 package is one such data visualization tool which helps us in understanding the data. 

Check out the R Certification Training by Edureka, a trusted online learning company with a network of more than 250,000 satisfied learners spread across the globe. Edureka’s Data Analytics with R training will help you gain expertise in R Programming, Data Manipulation, Exploratory Data Analysis, Data Visualization, Data Mining, Regression, Sentiment Analysis and using RStudio for real life case studies on Retail, Social Media.


BROWSE COURSES
REGISTER FOR FREE WEBINAR Breaking Barriers in Development with ChatGPT